解: f(x)=sinπ/3cos4x+cosπ/3sin4x+cos4xcosπ/6+sin4xsinπ/6.
f(x)=(√3/2)cos4x+(1/2)sin4x+(√3/2)cos4x+(1/2)sin4x.
=√3cos4x+sin4x.
=2[(1/2)sin4x+(√3/2)cos4x].
=2[sin4xcos(π/3)+cos4xsin(π/3)]
∴f(x)=2sin(4x+π/3).
. f(x)的最小正周:t=2π/4=π/2
∵sinx的单调递减区间为:∈(2kπ+π/, 2kπ+3π/2).
∴sin(4x+π/3)的单调递减区间为:(4x+π/3)∈(8kπ+7π/3, 8kπ+19π/3)